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The effect of a general orbit bump AB(z) on the closed 

orbit and the effect of a general focusing bump AB'(z) on the 

B-function were given by Courant and Snyder (Ann. of Phys. 3, 

l-48, 1958, hereafter referred to as C & S.) Here, we put 

their formulas into easy-to-apply forms and apply them to the 

main ring. For completeness, we will outline the derivations 

of the formulas given in C & S. 

I. ORBIT BUMP 

With an orbit bump AB(z) the orbit equation is 

d2x - + K(z)x = -8. 
dz2 

After the Floquet transformation 

we get 

x= m~U dz = vB d8 

- -I- v2u = d2u 
de2 

F(e) l 

(1) 

(2) 

(3) 
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The periodic solution (closed orbit) is 

p+2lT 
+ e -iv(0+7T) y 

1 
F(8')e (4) 

[Except for difference in notation this is identical to Eq. 

(4.7) of c & s'l. It is useful to calculate the "invariant" 

W [Eq. (3.22) of C & S], except now, W = W(9) is a function 

of 0. 

e+2lT 0+2Tr 
V = 

4v2sin2?rv 
F(8')e F(B')e 

z+ z+L 
1 = 

4sin2.rrv 
(5) 

where 

',L = orbit length all around 

phase of betatron oscillation. 

If the bumps are all localized 8-functions we have 
__L 

-i+ 
6,<e ' 

---I 

1 

i 

I 

(6) 



-3- TM-313 
0402 

where 
(ABUn 

*n q BP = kick angle of the nth bump, 

In between two bumps W is constant an,d the upper-bound of the 

orbit displacement in that region is given by f = m. 

Case 1 

If we have only one bump (n = 0) 

w= 
BO6O2 

4sin27ru' 

For the main ring if one bending magnet (60 = 0.0081) at 

80 
2 90m is missing we have, since sin nv h l/a 

WZ* (9Q m)(0.0081)2 = 2950 mm-mrad. .~ 

The maximum 8 is 8,x 2 100 m. This value of W gives for the 

maximum upper-bound of the closed-orbit displacement 
A 
X max = G = 540 mm 

which is, of course, much too large. 

Case 2 

If we have two bumps W(8) has only two values Wa and Wb 

in region (a) (from bump 1 

to bump 2) and region (b) 

(from bump 2 to bump l), 

respectively. They are 
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,-wa = 1 
24T5 e 

Q2 

4sin27-rv 
+ 61qe X 

\ (8) 
v&Z 
) 1 12 = 

4sin27rv t S,B, + 25S2$-5 cos A$b + 62P 1 2 ! 2p 

i 

iilt,,, Wb = l + 2”1”24& cos Wa + 6;B, 
* 4sin27rv 

This corresponds to the formulas given in TM-294-Eq.(2). For 

example, if A$a = IT and 61$ = 62$" we 

the case of a local orbit bump formed by 

advance apart. 

II. FOCUSING BUMP 

have Wb = 0. This is 

two magnets r-phase 

With a focusing bump AB'(z) the e-deviation equation 

after the Floquet transformation is 

The periodic solution is 

0+2lT 
1 

8wsin2Tv G(0')e-21ve'd6' 

8 

j@+2T 
+ e-2iv(f3+7r)f G(B')e2iwe'd01 . (10) 

I 
0 I 
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(Except for difference in notation this is identical to Eq. 

(4.50) of c & S). We can define a similar "invariant" U = U(0) 

by 

u(e) = 

e+2n 
1 = 

16v2sin22Tv 
G(el)e2ive'de 

G(0')e -2iv0'd6r 

z+L 
1 = 

4sin22.rrv 
.W) 

z 

If the bumps are localized B-functions we have 

& E 
WU, 

n BP = focusing "kink" of the nth bump. 

In between two bumps U is a constant and the upper-bound of AB 

in that region is G = @a. 

Case 1 

If we have only one bump (n = 0) 

B2E2 
UC O0 , 

4sin227rv 
(13) 
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For the main ring if one focusing quadrupole (so = 0.040 m-l) 

at, say, Box 2 99m and PO, 2 27 m is missing, we have, since 

sin 2~rv 2 1 

eUx g + (99m)2(0,040 m-1)2 = 3.92 
r 
( 
Eu G 
i..- Y + (27m)2(0.040 mF1)2 = 0.29. 

The upper-bounds of the increased B-functions, namely, B -t A$ 

are, then 

Since the main ring aperture is rather large these increases 

in f3 may well be tolerable. 

Case 2 

With two bumps U(0) has two values Ua and Ub in regions 

(a) and. (b) , respectively. 

In this case we have 

(b) 
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ua = 1 
2B2e 

2i+2 
+ clBle 

2i+l 

4sin22Tv 
X 

EZP2e 
-2i$2 

+ EIBle 

-2i+l 

/ ri 
1 i = 

I 4sin22av 
~~~~~ I- 25~~8~8~ cos A$, + #\ k22 

! E / 
I 

i 
Ub = 1 22 

Vl 
22 

4sin22rv 
+ 2el~2B182 cos A+a + e2B2 115) 

Suppose we ask the question whether it is possible to at least 

partially compensate for a missing quadrupole by turning off a 

second quadrupole. 

U is zero only when izlBl = s2b2 and cos A$ = -1. For a 

quadrupole 1~1 has the same value in the x and the y planes. 

To compensate equally for both planes we should have a, = Bl, 

namely if a focusing quadrupole is missing we should turn off 

also a focusing quadrupole. Furthermore, since 

Ua + ‘@ , = ~IT'V z 2a(20$) to get cos A$I~ and cos Ac$~ equally 

negative so that Ua and Ub are equally small we should have 

'@a =2a(k+i) andA$b=2"(19-k+$) with k = integer. 

Then cos Aea = cos Ac)~ = -cos t = -A. And we have 

2-a 22 
ua = Ub 1 4 Vl 

22 = 0.146 ~$3~ 

x-plane 

y-plane 
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if the first missing quadrupole is a focusing quadrupole. Thus 

the increase in B is reduced to 

+ &, z 2.5 (3, 

+ 6,, -z 
(16) 

1.4 By. 

Comparing these values with those in Eq. (14) we see that the 

effect of a missing quadrupole can indeed be partially compen- 

sated by turning off another quadrupole, but the amount of 

compensation is not very large. Here we considered only a 

compromised compensation in both the x and the y planes and 

in both regions (a) and (b). It is possible to improve the 

compensation if for some reason only one of the planes or one 

of the regions is considered important. 


